
The Search for Intelligent Solutions 🐫 : Discussion of Experimental
Results

Sylvia Cruz-Albrecht
Jacinta Olonilua

For this pset we conducted experiments that tested the efficiency of various search implementations in solving tile and maze
games.

Experimental Design

Our design is functor-based, such that experiments.ml and tests.ml contain solely a set of unique modules that are passed into
functors in order to acquire a testing function. There are four main functors (and their associated functions), abstracted and
separated into a tests_functions file, to aid in experimenting on both solvable and unsolvable versions of tiles and mazes. This
system design allows for dynamic testing and performance monitoring of various versions of puzzles while minimizing code
duplication.

Breadth-First Search vs. Depth-First Search

The various search regimens of Regular Breadth-First Search (BFS), Faster Breadth-First Search (BFS), and Depth-First Search
(DFS) are a result of the varying implementation of the collections that store pending states to be visited by the search
algorithm. While Regular BFS and Faster BFS both use a collection that acts as a queue, DFS uses a collection that acts as a
stack. This difference between first-in-first-out (FIFO) and last-in-first-out (LIFO) behavior in queues and stacks, respectively,
leads to a different solve mechanism. For queues, pending states are searched in a “breadth-first” manner, in which the
neighboring states of the current state are first searched before proceeding to the neighbors of those neighbors. In stacks, the
search operates “depth-first,” such that a single pathway is traversed all the way until the end before backtracking to another
neighbor of the current state. We hypothesize that BFS will outperform DFS in tile puzzles where the data structure is extremely
deep and solutions are rare, while DFS will excel in maze puzzles due to the more direct traversal of states. However, the only
way to know for sure is to experiment.

Time Complexity of BFS Implementations

There is an additional level of variance between Regular BFS and the Faster BFS due to their underlying implementation as
either a list or two stacks.

For Regular BFS (MakeQueueList), adding an element to the queue uses the “@” operator, which has a runtime of O(n) since the
time complexity grows linearly as the size of the existing queue grows. Its best and worst case for adding an element is O(n).
Meanwhile, the take function for Regular BFS is O(1) since it simply returns the head and tail of the queue.

In the MakeQueueStack functor used to implement Faster BFS, elements are consed onto the front of the second stack of the
queue. This means that the add function has a constant runtime, O(1), that isn't dependent on the size of the queue. The take
function’s worst case will be O(n) due to the need to reverse the list, but this is only when the first stack is empty. If the first
stack contains elements then its complexity will be constant, O(1). Thus, in general we can expect that the BFS using
MakeQueueStack will be more efficient than that of MakeQueueList due to the its lower average time complexity. These
differences will likely grow more significant with the size and complexity of the puzzles.

Results

Results: Solvable Tile Puzzles

For our first set of experiments, we compared regular BFS and faster BFS on a set of 4 tile puzzles (sizes 2x2, 3x3, 4x4, and
5x5). We did not experiment on DFS for tiles due to time considerations addressed later.* Of this set of puzzles, we ran three



rounds of puzzles, each time passing in a different number of steps from the goal state -- 15, 30, or 45 moves. We have
provided charts and graphs of our results. (Note that all graphs measure time on a logarithmic scale.)

Performance of Solving Tiles (15 Move Initial)

Tile Size Regular BFS Faster DFS

2x2 0.065088 0.061989

3x3 10.951996 6.337881

4x4 2.140999 1.724005

5x5 2165.509939 1152.60005

 

Performance of Solving Tiles (30 Move Initial)

Tile Size Regular BFS Faster BFS

2x2 0.093937 0.086069

3x3 22.075891 12.471199

4x4 75.02985 43.710947

5x5 11556.88405 5039.286137



 

Performance of Solving Tiles (45 Move Initial)

Tile Size Regular BFS Faster BFS

2x2 0.274897 0.265121

3x3 532.227039 396.180153

 

We found that across the board, the faster BFS consistently outpaced the regular BFS, with a difference that became especially
pronounced in the 4x4 and 5x5 puzzles. Additionally, this performance disparity also increases as the number of steps from the
goal state are increased. For example, in the 15-move 5x5 tile puzzle, the regular BFS is 1.87 times slower than the faster BFS.
In the 30-move 5x5 tile puzzle, the regular BFS rises to 2.29 times slower. This difference in performance likely stems from the
different search mechanisms of stacks vs queues. Due to the lower average time complexity of a queue with two stacks, the
search algorithm implemented this way enables small efficiency gains with every step -- adding and taking elements from the
pending collection -- that ultimately add up to a significant performance difference. Despite the gap between the performance
of the two, the graphs reveal that the curves for both types of BFS follow a similar progression for all types of tile puzzles, which
can be attributed to the queue behavior that they both exhibit.



Curiously, for the puzzle initialized with 15 moves, the runtime dipped slightly for the 4x4 tile for both Regular and Faster BFS,
making it marginally faster than the 3x3 tile. Since the runtimes vary between 1 and 10 ms, this decrease may not be
statistically significant, and given a larger sample size, we can still expect a clear pattern of increased runtime as puzzle size
increases. This finding may also suggest that for puzzles initiated only a few moves away from the goal state, the correlations
between time and size of puzzle may deteriorate slightly.

It is interesting to note the differences in runtime that result from changing the tile’s number of steps from the initial position. As
the number of steps increases from 15 to 30 and from 30 to 45, there is a general pattern of increased runtime. This can shown
graphically - in the graph of the 45-move tiles, the average BFS runtime between 2x2 and 3x3 puzzles is a is a significantly
steeper curve than the those of graphs of 15 and 30 move tiles. This is a pattern that we expect, given that increased steps
from the goal position would increase the number of steps that our search algorithms would need to make to reach the goal
state.

*Running our DFS solver on puzzles larger than size 2x2 was unsuccessful due to the amount of time it took, which can be
explained by the increase in magnitude of search requirements as we move from a 2x2 puzzle to a 3x3 puzzle, and so on. The
mathematical increase in reachable state spaces goes from from 4!/2 in a 2x2 puzzle to 9!/2 in 3x3 puzzle, 16!/2 in a 4x4 puzzle,
and so on. The reason why DFS in particular would take so long on a data structure with this many branched-off possibilities
has to do with the way that it traverses the data structure. Our DFS algorithm explores as far as possible along each possible
pathway (..the neighbors of the neighbors of the current state) before backtracking and searching the other immediate
neighbors of a current state. Due to the sheer number of possible pathways in puzzles larger than 2x2, the DFS will be
significantly stalled as it attempts to follow a pathway to the end before beginning another. These findings lead us to conclude
that BFS is the most practical search algorithm for searching tiles.

Results: Unsolvable Tile Puzzles

We generated unsolvable versions for all four tile puzzles by making the first tile negative, making it impossible for the goal state
to be reached. Using a try-with statement that caught the PuzzleSolver exception “CantReachGoal,” we were able to measure
the amount of time that it took each type of solver (regular BFS, faster BFS, and DFS) to attempt to solve each puzzle and reach
the conclusion that it was unsolvable.

Performance of Verifying Unsolvable Tiles

Tile Size Regular BFS Faster BFS

2x2 0.012159 0.00596

3x3 0.00906 0.007868

4x4 0.015974 0.01502

5x5 0.021935 0.020981



 

Overall, the time it took for the all search algorithms to verify the unsolvable tile puzzle increased as the size of the puzzle grew,
which we attribute to the increase in the number of states that the algorithm must check for in larger puzzles. For DFS, this
increase is almost exactly logarithmic (as seen in our graph corresponding to a logarithmic y-axis), while Regular and Faster
BFS lagged behind. The DFS algorithm was fastest in determining that the tile puzzles were unsolvable, which is likely due to its
depth-first trajectory of searching, leading it to encounter the -1 before a horizontal search algorithm would and therefore
eliminate pathways more quickly. As a result, the DFS solver was able to arrive at the “CantReachGoal” conclusion more
rapidly.

While both graphs mirror each other in their trajectory, the Faster BFS has a slight performance advantage over Regular BFS
here, which results from the more efficient implementation using two stacks vs a list. Since the two-stack implementation of
Faster BFS has lower time complexity demands for adding and taking elements, it makes sense for it to outperform Regular
BFS.

However, as the size of the tiles increase, these three curves converge at around 0.02 ms, suggesting that for larger puzzles
there is less discrepancy between the search algorithms in determining if a puzzle is unsolvable. This may be due to the similar,
baseline operations that must be performed to test the necessary states for unsolvable puzzles, likely occurring at a time
complexity between O(1) and O(n) for all three types of search.

Results: Solvable Mazes

For our solvable maze puzzle experiments, we created 4 different types of mazes, 5x5, 10x10, 15x15, and 20x20, and tested
our three search algorithms on solving each maze in both the forward and reverse direction. Mazes run in the forward direction
begin at the top-left corner and with the goal state located at the bottom-right corner of the puzzle. The reverse mazes were
experimented by switching the initial and goal states in the maze module that was passed into our solver.

Performance of Solving Mazes

Maze Size Regular BFS Faster BFS DFS

5x5 0.149965 0.174999 0.044107

10x10 1.549006 1.442194 0.141144

15x15 3.986835 3.67403 0.205994

20x20 13.414145 10.002851 0.295162



 

For mazes run in the forward direction, we found that DFS significantly outperformed Regular and Faster BFS for all maze sizes,
with the performance gap growing with the size of the maze. Meanwhile, both types of BFS have very similar runtimes. The
disparity between BFS and DFS for mazes can be explained by the amount of memory required by BFS. Since the BFS first
searches locations 1 step away, then locations 2 steps away, and so one, until the goal state is reached, it needs to maintain a
queue of pending states that have been visited but not yet searched. In this way, BFS must store multiple paths in memory at
once, while DFS only needs to keep track of a single path at any given time. As a result of the larger space complexity of BFS, it
is slowed down in situations, such as a maze, where the breadth of neighboring states is extremely large relative to the depth of
the goal state. The DPS solver must keep track of significantly fewer states, leading to a performance gain that is magnified as
the size of the puzzle grows. Thus, our experimental results of solving mazes corroborates our understanding of depth and
breadth searching.

Our Regular and Faster BFS solvers performed quite similarly on our forward maze tests for small mazes, although for puzzles
larger than 10x10 the Faster BFS is still favorable. This is because the time complexity benefits of Faster BFS are most
pronounced in situations where the pending data set contains many elements, in which case dequeuing takes constant time.
When the first stack of the two-stack implementation is empty, a reversal of the second stack must occur, which takes linear
time. Therefore, we can expect to see the largest performance benefit of Faster BFS over Regular BFS when the puzzles have
larger magnitude and complexity.

Performance of Solving Reverse Mazes

Maze Size Regular BFS Faster BFS DFS

5x5 0.118017 0.105143 0.092983

10x10 1.109123 1.025915 0.78392

15x15 4.480124 3.46303 3.128052

20x20 15.718937 8.496046 6.59585



 

For solving this same set of mazes in reverse, the runtimes for both types of BFS remained about the same, while DFS slowed
down, losing its performance advantage from the previous forward mazes. While DFS is still marginally faster than Faster BFS
and Regular BFS on this set of puzzles -- and these efficiency gains would be even more distinct on larger puzzle sizes -- its
performance is undeniably affected by the reverse traversal of the maze.

This finding can raise an interesting discussion about the structure of the maze walls itself as a factor in affecting the runtime of
the maze. For the purpose of our experiments, we tested a single 5x5 wall pattern (see image) that was repeated to create
mazes of larger sizes. It’s possible that for BFS, forward and reverse traversal of the maze is comparable, despite the changes
in wall pattern, since it ends up visiting most states in either case. For DFS, however, a change in the structure of the walls
leads to a different order of searching pathways, which will result in either a faster or slower traversal of the maze. In the way
that we laid out our wall tiles, we find that DFS solves the puzzle faster in the forward direction. 

 

A hypothesis for our specific situation might consider the number of pathways available to DFS in forward vs reverse: the top-
left of our puzzle has one possible pathway for the first three moves while in the bottom-right, the maze immediately branches
into two different pathways. Since there are more open spaces in the bottom-right of the puzzle, there are more immediate
possibilities than in the tunnel-like beginning of the top-left of the puzzle. As a result, reversing the maze will require DFS to
consider more pathways, and, due to its full-length traversal, this will slow down the search. For the larger mazes, where this
pattern is repeated, this slowing down by the walls will cause DFS to lose some of its performance benefit over BFS when it
comes to mazes.

Additionally, there is also a deterministic aspect that may play a role in affecting runtimes, especially for DFS. For instance,
when the puzzle runs in the forward direction, the DFS may first choose a pathway that may happen to lead to the goal state. If
this occurs, it will happen every time the puzzle is run. Therefore, changing the walls of the maze design slightly could alter the



"luck" of the algorithm in encountering its solution within a given timeframe. This deterministic variable, while important to
recognize, is most relevant when considering small sets of patterns such as the 5x5 maze. Since BFS searches all neighboring
states of a current state before proceeding, the order in which it selects states to search is not as critical as with DFS. This
difference is another reason why DFS solving performance is affected by reversal of the maze while BFS remains unaffected.

Results: Unsolvable Mazes

Performance of Verifying Unsolvable Mazes

Maze Size Regular BFS Faster BFS DFS

5x5 0.008821 0.00596 0.001907

10x10 0.002861 0.003099 0.002146

15x15 0.003815 0.003099 0.001907

20x20 0.001907 0.001907 0.001907

 

Finally, we tested unsolvable mazes by initializing our experiments with a maze completely made of walls except for the top-left
starting position and bottom-right goal position. For these mazes, we found that the DFS was consistently fastest in
determining that the maze was unsolvable, with a near constant runtime regardless of the maze size. Meanwhile, while the BFS
solvers encountered were slightly slower for the first few puzzles, their times decreased to match that of DFS for the 20x20
puzzle. All three solvers had comparable runtimes that ranged from between 0.002 and 0.008, which can be considered to be a
near constant runtime close to 0 for all tile sizes. This finding suggests that due to the design of our puzzle solvers, the time it
takes to determine that a maze is unsolvable is extremely low and near constant.

Conclusions

Given these experimental findings, we can conclude that the DFS solver, using a stack collection, is most efficient for solving
mazes while a queue-based BFS solver is better-suited for solving tiles. For unsolvable puzzles of both types, DFS slightly
edges out both types of BFS in its performance. The main efficiency benefit of the DFS solver is derived from its use of a stack
to keep track of the next locations to visit in a puzzle, leading it to traverse depth-wise before backtracking and searching other
neighbors of a current state. While this strategy allows for faster solving capabilities in situations such as a maze where the
maximum depth is equal to the solution depth, it will not perform as well when the search depth is extremely large.



The BFS Solver was effective in solving the tile puzzles as it did not get bogged down in searching extremely long, individual
pathways of states but rather was able to spread out its search in a more even manner. However, the time efficiency of the BFS
solver comes at the cost of memory, which becomes apparent when solving the maze puzzles. Since BFS considers many
different pathways at once, it must keep track of and store both pending and visited states in order to narrow down possible
pathways. Meanwhile, DFS will only store as much memory on the stack as is required for the longest pathway from the initial to
the goal state.

As a result of the memory requirements of the BFS solvers, the method used to implement the queue collection for storing
pending states is paramount. As seen in our experimental comparisons of Regular BFS and Faster BFS, small differences in
implementation can lead to significant efficiency differences when utilized by the solver. In particular, we found that the lower
average time complexity of the two-stack queue implementation was advantageous and led to consistently faster solving.

These tradeoffs between BFS and DFS are materialized in our experiment results, which show that the DFS solver was more
efficient than either of the BFS solvers when solving mazes, but it was impractical for solving the tile puzzles. For unsolvable
puzzles, the depth-wise search of the DFS solver was advantageous for more quickly reaching the conclusion that the puzzle is
unsolvable. These findings provide experimental support for the theories of the underlying implementation of our different
solvers, namely, the idea of traversing depth-wise or breadth-wise, as well as the implications of average time complexity in
affecting performance in the search for solutions.

Future Experimentation

Using the performance system that we have designed, future experimentation could be implemented to investigate more areas,
such as:

Non-square tile puzzles
Larger sized tile puzzles
Different maze board templates
Different types of unsolvable puzzles


